
u" = ~F , F = < (~wdl )  z > 1/2, u'~----- < w 2 > 1/z 
2 (2ulL 

Here w is the velocity fluctuation on a contour element dl. It is legitimate to propose that 
the measure of rotational excitation in a vortex is determined by parameter h, similar to the 
Planck constant in quantum physics -- an analog of our h -- serving as the measure of the inner 
angular momentum of a rotating particle. We then have h ~ pF (in a nonvortical stream h § 0 
as F § 0). On the basis of this estimate we obtain ~T = ~h and ~ ~ 0.5(7/~L) I/2. For in- 
stance, ~ = 0.| when L = 51. The circulation F is expressedhereinthe"isotropic turbulence" 
approximation and, therefore, the preceding treatment is appropriate when no strong inhomo- 
geneities occur in the fluctuations as, for example, in free turbulent streams. 

NOTATION 

Here ~ is the wave function; a, wave amplitude; b, wave phase; U, modulus of the veloc- 
ity; p, density (incompressible fluid); h, "quantum" parameter; x, y, longitudinal coordi- 
nate and the transverse coordinate in the mixing layer; and t, time. 
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FLOW MODEL OF A BOILING LIQUID IN NOZZLES 

V. N. Blinkov and S. D. Frolov UDC 532.529:536.423.1 

A nonequilibrium mathematical model of flow is constructed for a boiling liquid 
in nozzles. The theoretical results are compared with empirical results for the 
ease of flow of boiling water. 

Present theoretical models of flow of a boiling liquid in nozzles (tubes) mainly aim to 
determine the maximum flow rate. A critical survey of these models is contained in [l, 2]. 
It is seen that homogeneous equilibrium and metastable models are the most widely used, along 
with a model allowing for discrete phase flow with relative slip and simple models consider- 
ing the thermodynamic nonequilibrium of the process using empirical coefficients. It was 
shown in [3] that the use of such models is limited by the complexity of the flow structure 
of a boiling liquid and the nonequi!ibrium of exchange processes between the phases. In con- 
nection with this, it is important that a theoretical model of boiling liquid flow in nozzles 
be constructed which considers the structure of the flow and the effects of nonequilibrium of 
the interphase transfer. Such a model should describe the origination of the vapor phase in 
the liquid flow and the combined flow of the vapor and liquid phases. 

Well-known experimental investigations of the structure of a boiling liquid flow in Laval 
nozzles [4-8] with moderate initial parameters show that boiling begins primarily on the 
nozzle walls. The method in [9] is used to determine the intensity of this vapor formation. 
It is assumed that vapor bubbles are generated until the vapor content of the mixture reaches 
a value which is limiting for the existence of a bubble structure (~ = 0.74). 

N. E. Zhukov Kharkov Aviation Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, 
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The joint flow of vapor and liquid phases is described using the nonequilibrium model of 
a multiphase medium in [10]: a dual-velocity dual-temperature model of two-phase flow in a 
unidimensional, steady-state approximation. We will obtain the mathematical flow model in 
formulating the direct problem (calculation of the flow parameters in a channel of a speci- 
fied geometry). We will assume that inversion of the bubble structure into a drop structure 
takes place when a volume vapor content of 0.74 is reached in the mixture. 

Suppose that the vapor--liquid flow is a moving, monodisperse mixture of liquid and vapor 
with spherical bubbles or drops uniformly distributed in the carrier phase. The vapor in the 
bubbles will be considered saturated. We will also assume that the flow is nonequilibrium 
with respect to temperature only in the bubble region and with respect to both temperature 
and velocity in the drop region. 

We write the differential equations describing the motion of a vapor--liquid mixture with 
a drop structure: 

dm v d (,o~ WvL), ( i )  
dz dz 

din, = ___a (oo~dz), (2) 
dz dz 

dwl -- (1 ' ~ ) ~ J - X f - - X T z ,  (3) 
(1 - -  ~) p~ dz 

dwo dp I dmo 
- -  ~ - -  X~ - -  X~o -~ (wz - -  w~), 

0~9~ w~ dz dz f dz 

dp di~ = (1 --~z) wz __qm, (I - -  ~) 90wz ~-z ~-z 

(4) 

(5) 

apOw ~ di~ _ a ~  dp t_ 1 dm~ (w l - -wo)  2 
dz dz f dz 2 q~+X1(w'--wl)'  (6) 

1 dm~ l(p). (7) 
q~ § q lo-  f dz 

The last equation describes the balance of the inflow and outflow at the phase boundary cor- 
responding to a quasiequilibrium scheme of phase transition [11]. 

We will assign laws of mechanical phase interaction and phase friction against the 
channel wall similar to those in [12]. System (I)-(7) has a different form in describing 
the flow of a vapor--liquid mixture with a bubble structure: 

a) a single equation of motion is written for the mixture; 

b) the terms connected with velocity nonequilibrium are absent from the equation de- 
scribing heat flow to the vapor phase; 

c) the system is supplemented by an equation describing the change in the number of 
bubbles per unit volume of the mixture due to their separation from the channel walls 

J~ dN 

with averaging of the bubble diameter over the volume being done at each step in the 
integration of system (I)-(7) 

d = ~ /  6~ 
~N " 

A f t e r  s o l v i n g  ( 1 ) - ( 7 )  r e l a t i v e  t o  t h e  d e r i v a t i v e s ,  we r e p r e s e n t  t h e  p r e s s u r e  g r a d i e n t  i n  t h e  
f o r m  

1 4  

d p . ~  f 
dz w~ ' ( ~ ) 

1 - - - -  
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Fig. I. Fig. 2. 

Fig, I. Comparison of experimental [i) water flow rate at 
p* = 5.9; 2) 11.8; 3) 17.6 [7]; 4) 4 [8] bars] and theoret- 
ical flow-rate characteristics of a Laval nozzle, m, kg/ 
sec; ATn, ~ 

Fig. 2. Theoretical distributions of parameters along the 
Laval nozzle [i) p; 2) T; 3) w; 4) ~]: a) vapor; b) liquid; 
c) saturation temperature; points -- experimental distribu- 
tion of static pressure along the nozzle [8], p* = 4 bars; 
AT n = 0.5~ w, m/sec; z, m. 

where af is the frozen speed of sound in the mixture; q9 is a function defining the interphase 
interaction and the friction of the mixture against the nozzle wall. 

Within the framework of the chosen model, we have 

f o 0 
, ~ d_~p at ~ < 0 , 7 4 ,  

a [ a p  ~  p~] dpvs 
a~ = I (9) 

1 + - -  ~ at a ~ 0 , 7 4  
0 ~ s< 

( t h e  l i q u i d  i s  i n c o m p r e s s i b l e ,  p~ = p ~ ( T l )  ) .  E q u a t i o n s  ( 8 ) - ( 9 ) ,  i n c l u d i n g  t h e  n o t a t i o n ,  a g r e e  
w i t h  t h o s e  o b t a i n e d  e a r l i e r  i n  [ 3 ] .  

L e t  us s t o p  h e r e  to  s p e c i f y  t h e  laws  o f  i n t e r p h a s e  t r a n s f e r .  We w i l l  d e t e r m i n e  t h e  h e a t  
f l u x  q~g f rom the  l i q u i d  to  t he  p h a s e  b o u n d a r y  u s i n g  S c r i v e n ' s  w e l l - k n o w n  s o l u t i o n  [13 ] ,  o b -  
t a i n e d  w i t h  t h e  a s s u m p t i o n  t h a t  b u b b l e  g rowth  r a t e  i s  l i m i t e d  by t h e  f l o w  of  h e a t  f rom t h e  
l i q u i d  to  t he  p h a s e  b o u n d a r y .  The a n a l y t i c a l  a p p r o x i m a t i o n  in  [14] y i e l d s  a r e l a t i o n  o f  t h e  
t y p e  i n  [10] :  

N u i ~ = 3 . 9 J a  1 + - ~ \  6 J a )  + - ~ a  " 

Us ing  an e q u a t i o n  such  as (5) f o r  t h e  f l o w  o f  h e a t  to  the  d i s c r e t e  p h a s e ,  t h e  a s s u m p t i o n  o f  
s a t u r a t i o n  o f  t he  v a p o r  i n  the  b u b b l e s  a l l o w s  us to  o b t a i n  t he  r e l a t i o n s h i p  b e t w e e n  h e a t  f l u x  
qvo and p r e s s u r e  g r a d i e n t  d p / d z .  

I n  t h e  c a s e  where  t he  t w o - p h a s e  m i x t u r e  has  a d rop  s t r u c t u r e ,  h e a t  f l o w  f rom t h e  v a p o r  
to  t h e  s u r f a c e  o f  a d rop  w i t h  t he  t e m p e r a t u r e  T s ( p )  i s  u s u a l l y  d e s c r i b e d  by t h e  r e l a t i o n  f o r  
h e a t  e x c h a n g e  i n v o l v i n g  a s { n g l e  s p h e r i c a l  p a r t i c l e  w i t h  an i n f i n i t e  f l o w  o f  t he  c a r r i e r  
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Fig. 3. Fig. 4. 

Fig. 3. Comparison of experimental [8] and theoretical 
values of the velocity coefficient of a Laval nozzle: 
I) p* = 3; 2) 3.65; 3) 4; 4) 5 bars. 

Fig. 4. Comparison of experimental [8] and theoretical 
values of superheating of the liquid phase at the nozzle 
outlet (ATs) and difference in liquid-phase temperature 
at the nozzle inlet and outlet (ATres): I) ATres, L/d = 
48; 2) ATs, L/d = 48; 3) ATres, L/d = 18; 4) ATs, L/d = 
18; 5) calculation, L/d = 48; 6) calculation, L/d = 18. 
AT, ~ 

phase [6, ]0]: 
0 3 3  0 5  N u ~ , = 2 q - 0 . 6 P r  , R e . .  

To determine the heat flux from the superheated drop to the phase boundary q~, it is 
necessary to know the temperature gradient on the drop surface. Thus, at each step of inte- 
grating system (I)-(7), we numerically solved the equation of heat conduction in the spheri- 
cal drop with first-order boundary conditions, each t~me finding the temperature profile in 
the drop and the temperature gradient on its surface. We used an implicit difference scheme 
and found the solution by the trial-run method. 

The problem as a whole was solved by means of the following "adjustment" algorithm: with 
fixed stagnation parameters at the nozzle inlet, we assigned the pressure in the minimum 
cross section, thereby determining the rate of flow of the liquid and its superheating 
(assuming that there was no vapor formation in the convergent part of the nozzle). We then 
used the Runge--Kutta method, with automatic selection of the interval, to numerically solve 
the system of equations describing the flow of the vapor--liquid mixture. We used the method 
of successive approximations to find the value of flow rate at which, with a specified 
accuracy, the following boundary condition is satisfied 

p : p |  at z - - L  

or at which one of the conditions of realization of the critical flow regime is satisfied 
[3]: 

dp= ~0 a t  z<L,  __dP-- c o  a t  z = L .  

dz 0 dz 

In the range of outflow parameters investigated, a typical condition of realization of 
the critical regime is the occurrence during the solution of a singular (Sedlov) point in 
the bubble-structure flow region. This is connected with the fact that, in the chosen model 
(Wv = wZ at a < 0.74, inertia of the liquid in the radial direction neglected), the frozen 
speed of sound in the mixture (9) is of the same order of magnitude as the equilibrium velo- 
city. 

Experimental data from [7, 8] is used for comparison with the estimates. Figure I com- 
pares empirical and theoretical flow-rate characteristics of a Laval nozzle operated on boil- 
ing water. The divergence here is no greater than 4-5% (except for the point corresponding 
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to p* = 17.6 bars, ATn = 3.1~ Figure 2 shows typical theoretical distributions of the 
flow parameters along the divergent part of the nozzle. Also shown are experimental values 
of static pressure measured at different sections of the nozzle [8]. Analysis of the theo- 
retical distributions of the flow parameters permits the following conclusions: 

a) the flow has a vapor-drop structure for the main part of the nozzle (~ 0.74); 

b) the flow is Characterized by substantial interphase slip (w v -- wl) and superheating 
of the liquid. 

Figure 3 compares theoretical and experimental values of the nozzle velocity coefficient 
[5, 6] in subcritical (within the framework of the chosen model) flow regimes. The diver- 

gence does not exceed 8-10%. Given fixed p*, a reduction in the initial temperature of the 
liquid is accompanied by an increase in the coefficient ~, which is due to an increase in the 
fraction of the enthalpy drop recorded in the pure-liquid flow region (a similar result was 
described in [6]). 

The work [8] presented measurements of the temperature of heated water at the outlet of 
Laval nozzles Of different relative lengths L/d. 

Thus, within the parameter range investigated, the characteristics of Laval nozzles 
working on boiling water can be reliably predicted. 

NOTATION 

p, pressure, bars; T, temperature, ~ p, density, kg/m3; w, velocity, m/sec; m, mass 
flow rate, kg/sec; l, heat of transformation, J/kg; f, cross-sectional area of channel, m 2" 
~, volume vapor content; i, enthalpy, J/kg; S, entropy, J/kg-~ Xf, drag of drops per unit 
volume of the mixture, N/m3; z, axial coordinate of nozzle, m; N, number of bubbles (drops) 
per unit volume of mixture, m-3; ~, channel perimeter, m; J, capacity of surface centers of 
vapor formation, sec-1"m -2", ATn, initial subheating, K; L, nozzle length, m; d, diameter of 
bubbles, characteristic dimension of minimum nozzle cross section, m. Indices: l, liquid; 
v, vapor; o, phase bo~undary; s, saturation parameters; ~, parameters at infinity; *, stagna- 
tion parameters. 
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EFFECT OF BOUNDARY-LAYER INJECTION ON THE DRAG OF AN 

AXISYMMETRIC BODY IN A HYPERSONIC IMPERFECT-GAS FLOW 

V. I. Timoshenko UDC 533.601.155 

The article examines a similarity problem of hypersonic flow of an imperfect gas 
about an axisymmetric body in the presence of boundary-layer injection. 

We will study the basic principles underlying the effect of gas injection over a solid 
surface into a boundary layer on the drag of the axisymmetric body in a hypersonic gas flow 
by examining flow about a body with its generatrix described by the power relation rw(x) = 
ax 3/4. It was shown in [I] that, in this case, the problem of the viscous interaction of the 
nonpermeable surface of the body with the imperfect heat-conveying gas has the property of 
similitude, and the gasdynamic parameters in the boundary layer depend on a single variable 

VVe S orar 
f w  

These parameters  a re  de termined from a system of o r d i n a r y  d i f f e r e n t i a l  equa t ions .  When gas 
is  i n j e c t e d  over the  s u r f a c e  of the  body in to  the  boundary l a y e r ,  the  s i m i l a r i t y  p rope r ty  of  
the problem is preserved if the distribution of the mass injection rate along the generatrix 
of the body is determined by the relation 

(pvr)w = a ~ % V 1 + kY (oo) 3 ] / ' c  ~. ( 1 ) 
(M.a) 2 4 

In  accordance  with [1], the  fo l lowing  n o t a t i o n  i s  adopted:  

r; ,~ / d r * '  2 
M ~ I 1 / ~  u6 or&; . 

0 r w 

If a gas different from the gas of the hypersonic flow is injected into the boundary 
layer, then, besides (I), we need to assume that the viscosity coefficient of these gases 
under these conditions is a power function of temperature and that the exponent is the same 
for each gas. Then the differential equations to which the problem is reduced take the form 

0 (yN 0. a. 
an \ --~q ] d- f = 2re(g--u2), a~ 

0 YN Og Og 0 (yN( 1 pr) 0u2 a " 1 1 hi - h ~  ( 2 )  

0 ( YN Oci "1 + f  Oci - - 0  
O~ Sm a~ ] o~ 

The following notation is introduced here: 

= n y~,-- 1 

o o 2Ye, 
r*=rw(l+k](oo)), n = 3 /4 ,  k=21vi| 
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